首页 | 本学科首页   官方微博 | 高级检索  
     


ANOVA decomposition of conditional Gaussian processes for sensitivity analysis with dependent inputs
Abstract:Complex computer codes are widely used in science to model physical systems. Sensitivity analysis aims to measure the contributions of the inputs on the code output variability. An efficient tool to perform such analysis is the variance-based methods which have been recently investigated in the framework of dependent inputs. One of their issue is that they require a large number of runs for the complex simulators. To handle it, a Gaussian process (GP) regression model may be used to approximate the complex code. In this work, we propose to decompose a GP into a high-dimensional representation. This leads to the definition of a variance-based sensitivity measure well tailored for non-independent inputs. We give a methodology to estimate these indices and to quantify their uncertainty. Finally, the approach is illustrated on toy functions and on a river flood model.
Keywords:sensitivity analysis  dependent inputs  Gaussian process regression  functional decomposition  complex computer codes
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号