首页 | 本学科首页   官方微博 | 高级检索  
     


Small sample behavior of a robust heteroskedasticity consistent covariance matrix estimator
Abstract:In heteroskedastic regression models, the least squares (OLS) covariance matrix estimator is inconsistent and inference is not reliable. To deal with inconsistency one can estimate the regression coefficients by OLS, and then implement a heteroskedasticity consistent covariance matrix (HCCM) estimator. Unfortunately the HCCM estimator is biased. The bias is reduced by implementing a robust regression, and by using the robust residuals to compute the HCCM estimator (RHCCM). A Monte-Carlo study analyzes the behavior of RHCCM and of other HCCM estimators, in the presence of systematic and random heteroskedasticity, and of outliers in the explanatory variables.
Keywords:heteroskedasticity consistent covariance matrix  robustness  random and systematic heteroskedasticity
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号