首页 | 本学科首页   官方微博 | 高级检索  
     


Quantile regression based on a weighted approach under semi-competing risks data
Abstract:In this article, we investigate the quantile regression analysis for semi-competing risks data in which a non-terminal event may be dependently censored by a terminal event. Due to the dependent censoring, the estimation of quantile regression coefficients on the non-terminal event becomes difficult. In order to handle this problem, we assume Archimedean Copula to specify the dependence of the non-terminal event and the terminal event. Portnoy [Censored regression quantiles. J Amer Statist Assoc. 2003;98:1001–1012] considered the quantile regression model under right-censoring data. We extend his approach to construct a weight function, and then impose the weight function to estimate the quantile regression parameter for the non-terminal event under semi-competing risks data. We also prove the consistency and asymptotic properties for the proposed estimator. According to the simulation studies, the performance of our proposed method is good. We also apply our suggested approach to analyse a real data.
Keywords:copula model  dependent censoring  quantile regression  semi-competing risks data
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号