首页 | 本学科首页   官方微博 | 高级检索  
     


Regression calibration for logistic regression with multiple surrogates for one exposure
Authors:Edie A. Weller  Donald K. Milton  Ellen A. Eisen  Donna Spiegelman
Affiliation:1. Department of Biostatistics, Harvard School of Public Health and Dana Farber Cancer Institute, 44 Binney Street Mayer 225, Boston, MA 02115, USA;2. Department of Environmental Health, Harvard School of Public Health, 665 Huntington Avenue, Boston, MA 02115, USA;3. Department of Biostatistics and Epidemiology, Harvard School of Public Health, 677 Huntington Avenue, Boston, MA 02115, USA
Abstract:
Methods have been developed by several authors to address the problem of bias in regression coefficients due to errors in exposure measurement. These approaches typically assume that there is one surrogate for each exposure. Occupational exposures are quite complex and are often described by characteristics of the workplace and the amount of time that one has worked in a particular area. In this setting, there are several surrogates which are used to define an individual's exposure. To analyze this type of data, regression calibration methodology is extended to adjust the estimates of exposure-response associations for the bias and additional uncertainty due to exposure measurement error from multiple surrogates. The health outcome is assumed to be binary and related to the quantitative measure of exposure by a logistic link function. The model for the conditional mean of the quantitative exposure measurement in relation to job characteristics is assumed to be linear. This approach is applied to a cross-sectional epidemiologic study of lung function in relation to metal working fluid exposure and the corresponding exposure assessment study with quantitative measurements from personal monitors. A simulation study investigates the performance of the proposed estimator for various values of the baseline prevalence of disease, exposure effect and measurement error variance. The efficiency of the proposed estimator relative to the one proposed by Carroll et al. [1995. Measurement Error in Nonlinear Models. Chapman & Hall, New York] is evaluated numerically for the motivating example. User-friendly and fully documented Splus and SAS routines implementing these methods are available (http://www.hsph.harvard.edu/faculty/spiegelman/multsurr.html).
Keywords:Measurement error   Validation study   Main study   Metal working fluids   Exposure
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号