首页 | 本学科首页   官方微博 | 高级检索  
     


Empirical likelihood based confidence regions for first order parameters of heavy-tailed distributions
Authors:Julien Worms
Affiliation:a Université de Versailles-Saint-Quentin-En-Yvelines, Laboratoire de Mathématiques de Versailles (CNRS UMR 8100), UFR de Sciences, Bât. Fermat, 45 av. des Etats-Unis, 78035 Versailles Cedex, France
b Université Paris-Est-Créteil, Laboratoire d’Analyse et de Mathématiques Appliquées (CNRS UMR 8050), 61 av. du Général de Gaulle, 94010 Créteil cedex, France
Abstract:Let X1,…,Xn be some i.i.d. observations from a heavy-tailed distribution F, i.e. the common distribution of the excesses over a high threshold un can be approximated by a generalized Pareto distribution Gγ,σn with γ>0. This paper deals with the problem of finding confidence regions for the couple (γ,σn): combining the empirical likelihood methodology with estimation equations (close but not identical to the likelihood equations) introduced by Zhang (2007), asymptotically valid confidence regions for (γ,σn) are obtained and proved to perform better than Wald-type confidence regions (especially those derived from the asymptotic normality of the maximum likelihood estimators). By profiling out the scale parameter, confidence intervals for the tail index are also derived.
Keywords:Extreme values   Generalized Pareto distribution   Confidence regions   Empirical likelihood   Profile empirical likelihood
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号