首页 | 本学科首页   官方微博 | 高级检索  
     


Adjusted empirical likelihood models with estimating equations for accelerated life tests
Authors:Ni WangJye-Chi Lu  Di ChenPaul H. Kvam
Affiliation:a Google, Inc. New York, NY 10010, USA
b Biostatistics, UCB Pharma, Inc. Symrna, GA 30080, USA
c H. Milton Stewart School of Industrial and Systems Engineering, Georgia Institute of Technology, 755 Ferst Drive, Atlanta, GA 30332-0205, USA
Abstract:
This article proposes an adjusted empirical likelihood estimation (AMELE) method to model and analyze accelerated life testing data. This approach flexibly and rigorously incorporates distribution assumptions and regression structures by estimating equations within a semiparametric estimation framework. An efficient method is provided to compute the empirical likelihood estimates, and asymptotic properties are studied. Real-life examples and numerical studies demonstrate the advantage of the proposed methodology.
Keywords:Asymptotics   Maximum likelihood estimation   Percentile regression   Random censoring   Reliability
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号