首页 | 本学科首页   官方微博 | 高级检索  
     


Conditional quantile estimation with auxiliary information for left-truncated and dependent data
Authors:Han-Ying Liang,Jacobo de Uñ  a-Á  lvarez
Affiliation:a Department of Mathematics, Tongji University, Shanghai 200092, PR China
b Department of Statistics and OR, Facultad de Ciencias Económicas y Empresariales, Universidad de Vigo, Campus Lagoas-Marcosende, 36310 Vigo, Spain
Abstract:In this paper, the empirical likelihood method is used to define a new estimator of conditional quantile in the presence of auxiliary information for the left-truncation model. The asymptotic normality of the estimator is established when the data exhibit some kind of dependence. It is assumed that the lifetime observations with multivariate covariates form a stationary αmixing sequence. The result shows that the asymptotic variance of the proposed estimator is not larger than that of standard kernel estimator. Finite sample behavior of the estimator is investigated via simulations too.
Keywords:Asymptotic normality   Conditional quantile estimator   Truncated data     mmlsi0016"   class="  mathmlsrc"   onclick="  submitCitation('/science?_ob=MathURL&  _method=retrieve&  _eid=1-s2.0-S0378375811002047&  _mathId=si0016.gif&  _pii=S0378375811002047&  _issn=03783758&  _acct=C000054348&  _version=1&  _userid=3837164&  md5=07a80425d5b35e967c088602209c6e16')"   style="  cursor:pointer  "   alt="  Click to view the MathML source"   title="  Click to view the MathML source"  >  formulatext"   title="  click to view the MathML source"  >αMixing   Auxiliary information
本文献已被 ScienceDirect 等数据库收录!
相似文献(共20条):
[1]、Shi,Yidan,Zeng,Leilei,Thompson,Mary E.,Tyas,Suzanne L..Augmented likelihood for incorporating auxiliary information into left-truncated data[J].Lifetime data analysis,2021,27(3):460-480.
[2]、Mei Yao,Lu Lin,Yu-Xin Wang.Variable selection and weighted composite quantile estimation of regression parameters with left-truncated data[J].统计学通讯:理论与方法,2018,47(18):4469-4482.
[3]、Han-Ying Liang,Jong-Il Baek.Asymptotic normality of conditional density estimation with left-truncated and dependent data[J].Statistical Papers,2016,57(1):1-20.
[4]、Xu Liu,Peixin LiuYong Zhou.Distribution estimation with auxiliary information for missing data[J].Journal of statistical planning and inference,2011,141(2):711-724.
[5]、Jing Yang,Limin Peng.Estimating cross quantile residual ratio with left-truncated semi-competing risks data[J].Lifetime data analysis,2018,24(4):652-674.
[6]、Rafael Weißbach,Wladislaw Poniatowski,Walter Krämer.Nearest neighbor hazard estimation with left-truncated duration data[J].AStA Advances in Statistical Analysis,2013,97(1):33-47.
[7]、Yu Shen,Guo-Liang Fan.Penalized empirical likelihood for quantile regression with missing covariates and auxiliary information[J].统计学通讯:理论与方法,2018,47(8):2001-2021.
[8]、Cunjie Lin,Li Zhang,Yong Zhou.Conditional quantile residual lifetime models for right censored data[J].Lifetime data analysis,2015,21(1):75-96.
[9]、Nonparametric estimation of the bivariate survival function with left-truncated and right-censored data[J].Journal of statistical planning and inference
[10]、Sungwan Bang,HyungJun Cho,Myoungshic Jhun.Simultaneous estimation for non-crossing multiple quantile regression with right censored data[J].Statistics and Computing,2016,26(1-2):131-147.
[11]、Joseph G. Ibrahim,Stuart R. Lipsitz,& Nick Horton.Using auxiliary data for parameter estimation with non-ignorably missing outcomes[J].Journal of the Royal Statistical Society. Series C, Applied statistics,2001,50(3):361-373.
[12]、Jackknife methods for left-truncated data[J].Journal of statistical planning and inference
[13]、Soonphill Hong,Jinmi Kim,Choongrak Kim.Nonparametric estimation of quantile functions for randomly right censored data[J].Journal of the Korean Statistical Society,2013,42(2):169-176.
[14]、Quantile regression methods for left-truncated and right-censored data[J].Journal of Statistical Computation and Simulation
[15]、A. Arcos,M. Rueda,M. D. Martínez-Miranda.Using multiparametric auxiliary information at the estimation stage[J].Statistical Papers,2005,46(3):339-358.
[16]、Chyong-Mei Chen,Pao-Sheng Shen.Conditional maximum likelihood estimation in semiparametric transformation model with LTRC data[J].Lifetime data analysis,2018,24(2):250-272.
[17]、Wang C,Sun J,Sun L,Zhou J,Wang D.Nonparametric estimation of current status data with dependent censoring[J].Lifetime data analysis,2012,18(4):434-445.
[18]、Biao Zhang.Bootstrapping with auxiliary information[J].Revue canadienne de statistique,1999,27(2):237-249.
[19]、Bootstrap methods for bias correction and confidence interval estimation for nonlinear quantile regression of longitudinal data[J].Journal of Statistical Computation and Simulation
[20]、Francesco Bravo,Ba M. Chu.Semiparametric estimation of moment condition models with weakly dependent data[J].Journal of nonparametric statistics,2017,29(1):108-136.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号