Bootstrapping regression models with BLUS residuals |
| |
Authors: | Mich le Grenier,Christian L ger |
| |
Affiliation: | Michèle Grenier,Christian Léger |
| |
Abstract: | To bootstrap a regression problem, pairs of response and explanatory variables or residuals can be resam‐pled, according to whether we believe that the explanatory variables are random or fixed. In the latter case, different residuals have been proposed in the literature, including the ordinary residuals (Efron 1979), standardized residuals (Bickel & Freedman 1983) and Studentized residuals (Weber 1984). Freedman (1981) has shown that the bootstrap from ordinary residuals is asymptotically valid when the number of cases increases and the number of variables is fixed. Bickel & Freedman (1983) have shown the asymptotic validity for ordinary residuals when the number of variables and the number of cases both increase, provided that the ratio of the two converges to zero at an appropriate rate. In this paper, the authors introduce the use of BLUS (Best Linear Unbiased with Scalar covariance matrix) residuals in bootstrapping regression models. The main advantage of the BLUS residuals, introduced in Theil (1965), is that they are uncorrelated. The main disadvantage is that only n —p residuals can be computed for a regression problem with n cases and p variables. The asymptotic results of Freedman (1981) and Bickel & Freedman (1983) for the ordinary (and standardized) residuals are generalized to the BLUS residuals. A small simulation study shows that even though only n — p residuals are available, in small samples bootstrapping BLUS residuals can be as good as, and sometimes better than, bootstrapping from standardized or Studentized residuals. |
| |
Keywords: | BLUS residuals standardized residuals Studentized residuals bootstrap regression |
|
|