Abstract: | Differential equations have been used in statistics to define functions such as probability densities. But the idea of using differential equation formulations of stochastic models has a much wider scope. The author gives several examples, including simultaneous estimation of a regression model and residual density, monotone smoothing, specification of a link function, differential equation models of data, and smoothing over complicated multidimensional domains. This paper aims to stimulate interest in this approach to functional estimation problems, rather than provide carefully worked out methods. |