Abstract: | Data‐analytic tools for models other than the normal linear regression model are relatively rare. Here we develop plots and diagnostic statistics for nonconstant variance for the random‐effects model (REM). REMs for longitudinal data include both within‐ and between‐subject variances. A basic assumption is that the two variance terms are constant across subjects. However, we often find that these variances are functions of covariates, and the data set has what we call explainable heterogeneity, which needs to be allowed for in the model. We characterize several types of heterogeneity of variance in REMs and develop three diagnostic tests using the score statistic: one for each of the two variance terms, and the third for a form of multivariate nonconstant variance. For each test we present an adjusted residual plot which can identify cases that are unusually influential on the outcome of the test. |