首页 | 本学科首页   官方微博 | 高级检索  
     

均值——下偏距(M-LPM)组合优化下的两基金分离定理
引用本文:张维,王平,张小涛. 均值——下偏距(M-LPM)组合优化下的两基金分离定理[J]. 西安电子科技大学学报(社会科学版), 2008, 18(2): 40-44
作者姓名:张维  王平  张小涛
作者单位:1. 天津大学,管理学院,天津,300072;天津财经大学,天津,300222
2. 天津大学,管理学院,天津,300072
摘    要:通常的投资建议和两基金分离定理之间存在较大差异,这就是著名的Canner难题。厚尾分布以及投资者对风险的厌恶水平对真实的投资组合行为有显著的影响,在考虑下侧风险的情况下,本文关注投资者如何选择投资组合、两基金分离定理在什么情况下能够成立、以及对投资者的投资策略的选择的影响如何。当目标等于无风险利率时,有文献表明两基金分离定理可以在均值——下偏距(M-LPM)中得到证明。然而,除了以无风险利率为目标外,哪些其它的目标也可以使分离定理成立的问题已经出现。本文尝试回答这个问题,并对投资建议和两基金分离定理的差异给出了合理的解释。

关 键 词:M-LPM  两基金分离  投资组合  组合优化
文章编号:1008-472X(2008)02-0040-05
修稿时间:2007-06-25

Two-fund Separation Theorem under Mean-LPM Model
ZHANG WEI,WANG PING,ZHANG XIAOTAO. Two-fund Separation Theorem under Mean-LPM Model[J]. Journal of Xidian University (Social Sciences Edition), 2008, 18(2): 40-44
Authors:ZHANG WEI  WANG PING  ZHANG XIAOTAO
Affiliation:ZHANG WEI, WANG PING, ZHANG XIAOTAO (1.School of Management, Tianjin University, Tianjin, 300072, China; 2.Tianjin University of Finance and Economics, Tianjin, 300222, China)
Abstract:The advice of investment is apparently inconsistent with the separation theorem, which is called Canner puzzle. Fat tail and risk preference of investors have a remarkable effect on the investment behavior. Taking into account the downside risk, the paper wants to know how to choose investment portfolio and how two-fund separation theorem can hold and its effect on investment strategy. As measures of portfolio risk, lower partial moments (LPM) have several advantages over variance, the traditional measure of risk. A separation theorem can be proven in the context of mean-LPM portfolio optimization, when the target is equal to the risk-free interest rate. The paper tries to find out which targets admit separation. The rational explications of the diversities between the popular investment advice and the separation theorem are given.
Keywords:M-LPM, Two-fund separation theorem  Investment portfolio  Portfolio optimize
本文献已被 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号