首页 | 本学科首页   官方微博 | 高级检索  
     

迭代法迭代阵谱半径新上界
引用本文:高中喜,黄廷祝,王广彬. 迭代法迭代阵谱半径新上界[J]. 电子科技大学学报(社会科学版), 2002, 0(5)
作者姓名:高中喜  黄廷祝  王广彬
作者单位:电子科技大学应用数学学院 成都610054 (高中喜,黄廷祝),上海大学数学系 上海200436(王广彬)
基金项目:四川省跨世纪杰出青年科技学术带头人基金资助项目,编号:JSA1081
摘    要:引用双严格对角占优的概念,针对线性方程组bAx=在求数值解时常用的迭代方法,给出了Jacobi和Gauss-Seidel迭代法迭代阵谱半径的新上界,该新上界优于严格对角占优矩阵条件下得到的已有的结果,是已有结果在更广泛矩阵类条件下的推广,对相应迭代法迭代阵谱半径的估计更加精确。最后给出了数值例子说明所给结果的优越性。

关 键 词:线性方程组  双对角占优  迭代法  谱半径

A New Upper Bound for the Spectral Radius of Iterative Matrices
Gao Zhongxi Huang Tingzhu Wang Guangbin. A New Upper Bound for the Spectral Radius of Iterative Matrices[J]. Journal of University of Electronic Science and Technology of China(Social Sciences Edition), 2002, 0(5)
Authors:Gao Zhongxi Huang Tingzhu Wang Guangbin
Affiliation:Gao Zhongxi1 Huang Tingzhu1 Wang Guangbin2
Abstract:Jacobi and Gauss-Seidel iterations for solving large linear system bAx= are studied. Based on the concept of the doubly diagonal dominance, new upper bound for the spectral radius of Jacobi and Gauss-Seidel iterations are presented. Results obtained improve the known corresponding results and are suited to extended matrices. Finally, two numerical examples are given for illustrating advantage results in this paper.
Keywords:linear system  diagonal strictly dominance  iteration  spectral radius
本文献已被 CNKI 等数据库收录!
正在获取引用信息,请稍候...
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号