首页 | 本学科首页   官方微博 | 高级检索  
     


Local Linear Estimation for Time-Dependent Coefficients in Cox's Regression Models
Authors:ZONGWU CAI,&   YANQING SUN
Affiliation:University of North Carolina at Charlotte
Abstract:This article develops a local partial likelihood technique to estimate the time-dependent coefficients in Cox's regression model. The basic idea is a simple extension of the local linear fitting technique used in the scatterplot smoothing. The coefficients are estimated locally based on the partial likelihood in a window around each time point. Multiple time-dependent covariates are incorporated in the local partial likelihood procedure. The procedure is useful as a diagnostic tool and can be used in uncovering time-dependencies or departure from the proportional hazards model. The programming involved in the local partial likelihood estimation is relatively simple and it can be modified with few efforts from the existing programs for the proportional hazards model. The asymptotic properties of the resulting estimator are established and compared with those from the local constant fitting. A consistent estimator of the asymptotic variance is also proposed. The approach is illustrated by a real data set from the study of gastric cancer patients and a simulation study is also presented.
Keywords:asymptotics    censored data    local constant fitting    local linear fitting    local partial likelihood    proportional hazards model    time-dependent covariate
正在获取引用信息,请稍候...
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号