首页 | 本学科首页   官方微博 | 高级检索  
     


Maximum likelihood estimation for spatial models by Markov chain Monte Carlo stochastic approximation
Authors:Ming Gao Gu,&   Hong-Tu Zhu
Affiliation:Chinese University of Hong Kong, People's Republic of China,;University of Victoria, Canada
Abstract:We propose a two-stage algorithm for computing maximum likelihood estimates for a class of spatial models. The algorithm combines Markov chain Monte Carlo methods such as the Metropolis–Hastings–Green algorithm and the Gibbs sampler, and stochastic approximation methods such as the off-line average and adaptive search direction. A new criterion is built into the algorithm so stopping is automatic once the desired precision has been set. Simulation studies and applications to some real data sets have been conducted with three spatial models. We compared the algorithm proposed with a direct application of the classical Robbins–Monro algorithm using Wiebe's wheat data and found that our procedure is at least 15 times faster.
Keywords:Auto-normal model    Ising model    Markov chain Monte Carlo methods    Off-line average    Spatial models    Stochastic approximation    Very-soft-core model
相似文献(共20条):
[1]、Maximum likelihood estimation of variance components-a Monte Carlo study[J].Journal of Statistical Computation and Simulation
[2]、Matt Whiley,Simon P. Wilson.Parallel algorithms for Markov chain Monte Carlo methods in latent spatial Gaussian models[J].Statistics and Computing,2004,14(3):171-179.
[3]、Hongtu Zhu,Minggao Gu,Bradley Peterson.Maximum likelihood from spatial random effects models via the stochastic approximation expectation maximization algorithm[J].Statistics and Computing,2007,17(2):163-177.
[4]、Maximum likelihood estimation for generalized conditionally autoregressive models of spatial data[J].Journal of the Korean Statistical Society
[5]、Mary Kathryn Cowles.Accelerating Monte Carlo Markov chain convergence for cumulative-link generalized linear models[J].Statistics and Computing,1996,6(2):101-111.
[6]、Arnaud Doucet,Simon J. Godsill,Christian P. Robert.Marginal maximum a posteriori estimation using Markov chain Monte Carlo[J].Statistics and Computing,2002,12(1):77-84.
[7]、Gavin J. Gibson,Eric Renshaw.Likelihood estimation for stochastic compartmental models using Markov chain methods[J].Statistics and Computing,2001,11(4):347-358.
[8]、Michael A. Hauser.Maximum likelihood estimators for ARMA and ARFIMA models: a Monte Carlo study[J].Journal of statistical planning and inference,1999,80(1-2):229-255.
[9]、Heck,Daniel W.,Overstall,Antony M.,Gronau,Quentin F.,Wagenmakers,Eric-Jan.Quantifying uncertainty in transdimensional Markov chain Monte Carlo using discrete Markov models[J].Statistics and Computing,2019,29(4):631-643.
[10]、Benjamin M. Gyori,Daniel Paulin.Hypothesis testing for Markov chain Monte Carlo[J].Statistics and Computing,2016,26(6):1281-1292.
[11]、Monte Carlo integration with Markov chain[J].Journal of statistical planning and inference
[12]、Marcelo Pereyra.Proximal Markov chain Monte Carlo algorithms[J].Statistics and Computing,2016,26(4):745-760.
[13]、H., Jiang,L.C., Tang.Markov chain Monte Carlo methods for parameter estimation of the modified Weibull distribution[J].Journal of applied statistics,2008,35(6):647-658.
[14]、BROOKS,STEPHEN P.,ROBERTS,GARETH O..Convergence assessment techniques for Markov chain Monte Carlo[J].Statistics and Computing,1998,8(4):319-335.
[15]、Markov chain Monte Carlo tests for designed experiments[J].Journal of statistical planning and inference
[16]、Benedict Leimkuhler,Charles Matthews,Jonathan Weare.Ensemble preconditioning for Markov chain Monte Carlo simulation[J].Statistics and Computing,2018,28(2):277-290.
[17]、Forster,Jonathan J.,McDonald,John W.,Smith,Peter W. F..Markov chain Monte Carlo exact inference for binomial and multinomial logistic regression models[J].Statistics and Computing,2003,13(2):169-177.
[18]、P. G. Ridall,A. N. Pettitt,N. Friel,P. A. McCombe, R. D. Henderson.Motor unit number estimation using reversible jump Markov chain Monte Carlo methods[J].Journal of the Royal Statistical Society. Series C, Applied statistics,2007,56(3):235-269.
[19]、Firoozeh Rivaz.Monte Carlo approximation of likelihood function in spatial GLMMs through an empirical Bayes method[J].统计学通讯:模拟与计算,2017,46(2):1322-1335.
[20]、Maximum likelihood estimation for directional conditionally autoregressive models[J].Journal of statistical planning and inference
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号