Abstract: | For the problem of estimating a parameter θ when θ is known to lie in a closed, convex subset D of Rk, conditions are given under which estimators δ of θ cannot be Bayes estimators, as well as conditions under which δ is inadmissible. The estimators considered are so-called “boundary estimators”. Maximum-likelihood estimators in truncated parameter spaces are examples to which our results often apply. For the special case when k = 1 and D is compact, two classes of estimators dominating the inadmissible ones are constructed. Some examples are given. |