首页 | 本学科首页   官方微博 | 高级检索  
     


Using repeated-prevalence data in multi-state modeling of renal replacement therapy
Authors:Antoine Dany  Emmanuelle Dantony  Mad-Hélénie Elsensohn  Emmanuel Villar  Cécile Couchoud
Affiliation:1. Service de Biostatistique, Hospices Civils de Lyon, 162, avenue Lacassagne – F-69003 Lyon, France;2. Département de Biologie Humaine, Université de Lyon 1, F-69100, Villeurbanne, France;3. CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Equipe Biostatistique-Santé, F-69100 Villeurbanne, France;4. Département de Biologie Humaine, Université de Lyon 1, F-69100, Villeurbanne, France;5. Service de Néphrologie, Dialyse et Transplantation rénale, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, F-69310 Pierre-Bénite, France;6. Service de Néphrologie et Dialyse, Centre Hospitalier St Joseph St Luc, F-69007 Lyon, France;7. Registre REIN, Agence de la Biomédecine, F-93210 Saint-Denis La Plaine, France
Abstract:Multi-state models help predict future numbers of patients requiring specific treatments but these models require exhaustive incidence data. Deriving reliable predictions from repeated-prevalence data would be helpful. A new method to model the number of patients that switch between therapeutic modalities using repeated-prevalence data is presented and illustrated. The parameters and goodness of fit obtained with the new method and repeated-prevalence data were compared to those obtained with the classical method and incidence data. The multi-state model parameters’ confidence intervals obtained with annually collected repeated-prevalence data were wider than those obtained with incidence data and six out of nine pairs of confidence intervals did not overlap. However, most parameters were of the same order of magnitude and the predicted patient distributions among various renal replacement therapies were similar regardless of the type of data used. In the absence of incidence data, a multi-state model can still be successfully built with annually collected repeated-prevalence data to predict the numbers of patients requiring specific treatments. This modeling technique can be extended to other chronic diseases.
Keywords:chronic disease  chronic kidney failure  organ transplantation  prevalence  renal dialysis  statistical models
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号