首页 | 本学科首页   官方微博 | 高级检索  
     


Calculation of the Prokhorov distance by optimal quantization and maximum flow
Authors:Bernard Garel  Jean-Claude Massé
Affiliation:(1) Mathematical Institute of Toulouse (UPS) and ENSEEIHT, 2 rue Camichel, 31071 Toulouse Cédex 7, France;(2) Département de Mathématiques et de Statistique, Université Laval, Sainte-Foy, Québec, G1K 7P4, Canada
Abstract:Calculating exact values of the Prokhorov metric for the set of probability distributions on a metric space is a challenging problem. In this paper probability distributions are approximated by finite-support distributions through optimal or quasi-optimal quantization, in such a way that exact calculation of the Prokhorov distance between a distribution and a quantizer can be performed. The exact value of the Prokhorov distance between two quantizers is obtained by solving an optimization problem through the Simplex method. This last value is used to approximate the Prokhorov distance between the two initial distributions, and the accuracy of the approximation is measured. We illustrate the method on various univariate and bivariate probability distributions. Approximation of bivariate standard normal distributions by quasi-optimal quantizers is also considered.
Keywords:Prokhorov metric  Weak convergence  Quantization  Flow on a network
本文献已被 SpringerLink 等数据库收录!
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号