首页 | 本学科首页   官方微博 | 高级检索  
     


Cytometry inference through adaptive atomic deconvolution
Authors:Manon Costa  Pauline Gonnord  Laurent Risser
Affiliation:1. Institut de Mathématiques de Toulouse, UMR 5219, Université de Toulouse III, Toulouse, France;2. Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM UMR1043, CNRS UMR 5282, Université Toulouse III, Toulouse, France
Abstract:
In this paper, we consider a statistical estimation problem known as atomic deconvolution. Introduced in reliability, this model has a direct application when considering biological data produced by flow cytometers. From a statistical point of view, we aim at inferring the percentage of cells expressing the selected molecule and the probability distribution function associated with its fluorescence emission. We propose here an adaptive estimation procedure based on a previous deconvolution procedure introduced by Es, Gugushvili, and Spreij [(2008), ‘Deconvolution for an atomic distribution’, Electronic Journal of Statistics, 2, 265–297] and Gugushvili, Es, and Spreij [(2011), ‘Deconvolution for an atomic distribution: rates of convergence’, Journal of Nonparametric Statistics, 23, 1003–1029]. For both estimating the mixing parameter and the mixing density automatically, we use the Lepskii method based on the optimal choice of a bandwidth using a bias-variance decomposition. We then derive some convergence rates that are shown to be minimax optimal (up to some log terms) in Sobolev classes. Finally, we apply our algorithm on the simulated and real biological data.
Keywords:Mixture models  atomic deconvolution  adaptive kernel estimators  inverse problems
相似文献(共20条):
[1]、Frederico Caeiro,M. Ivette Gomes.Semi-parametric tail inference through probability-weighted moments[J].Journal of statistical planning and inference,2011,141(2):937-950.
[2]、Christophe Chesneau.On the adaptive wavelet deconvolution of a density for strong mixing sequences[J].Journal of the Korean Statistical Society,2012,41(4):423-436.
[3]、J. E. Griffin.An adaptive truncation method for inference in Bayesian nonparametric models[J].Statistics and Computing,2016,26(1-2):423-441.
[4]、Statistical inference through AFT model for biotechnical systems[J].Journal of statistical planning and inference
[5]、Linda S. L. Tan.Stochastic variational inference for large-scale discrete choice models using adaptive batch sizes[J].Statistics and Computing,2017,27(1):237-257.
[6]、Statistical inference for the extreme value distribution under adaptive Type-II progressive censoring schemes[J].Journal of Statistical Computation and Simulation
[7]、Martina Benešová,Peter Tegelaar.Bivariate uniform deconvolution[J].Statistics,2016,50(4):812-840.
[8]、Elias Masry,John A. Rice.Gaussian deconvolution via differentiation[J].Revue canadienne de statistique,1992,20(1):9-21.
[9]、Hsiu J. Ho,Saumyadipta Pyne,Tsung I. Lin.Maximum likelihood inference for mixtures of skew Student-t-normal distributions through practical EM-type algorithms[J].Statistics and Computing,2012,22(1):287-299.
[10]、Non-parametric Bayesian inference through MCMC method for Y-linked two-sex branching processes with blind choice[J].Journal of Statistical Computation and Simulation
[11]、Luc Devroye.Consistent deconvolution in density estimation[J].Revue canadienne de statistique,1989,17(2):235-239.
[12]、C. P. Robert,T. Rydén,& D. M. Titterington.Bayesian inference in hidden Markov models through the reversible jump Markov chain Monte Carlo method[J].Journal of the Royal Statistical Society. Series B, Statistical methodology,2000,62(1):57-75.
[13]、Iain M. Johnstone,Gérard Kerkyacharian,Dominique Picard, Marc Raimondo.Wavelet deconvolution in a periodic setting[J].Journal of the Royal Statistical Society. Series B, Statistical methodology,2004,66(3):547-573.
[14]、Ali A. Ismail.Statistical inference for a step-stress partially-accelerated life test model with an adaptive Type-I progressively hybrid censored data from Weibull distribution[J].Statistical Papers,2016,57(2):271-301.
[15]、Eugenia, Stoimenova.Nonparametric statistical inference[J].Journal of applied statistics,2012,39(6):1384-1385.
[16]、Bayesian quantile inference[J].Journal of Statistical Computation and Simulation
[17]、Barbillon,Pierre,Schwaller,Loïc,Robin, Stéphane,Flachs, Andrew,Stone, Glenn Davis.Epidemiologic network inference[J].Statistics and Computing,2020,30(1):61-75.
[18]、Martin L. Hazelton,Berwin A. Turlach.Nonparametric density deconvolution by weighted kernel estimators[J].Statistics and Computing,2009,19(3):217-228.
[19]、Christophe Chesneau,Isha Dewan.On a deconvolution problem under competing risks[J].Statistics,2017,51(2):331-346.
[20]、Alexander Meister.On general consistency in deconvolution mode estimation[J].Journal of statistical planning and inference,2011,141(2):771-781.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号