首页 | 本学科首页   官方微博 | 高级检索  
     


Nonparametric estimation of the link function including variable selection
Authors:Gerhard Tutz  Sebastian Petry
Affiliation:(1) Institut f?r Medizininformatik, Biometrie und Epidemiologie, Friedrich-Alexander-Universit?t Erlangen-N?rnberg, Waldstra?e 6, 91054 Erlangen, Germany;(2) Institut f?r Statistik, Ludwig-Maximilians-Universit?t M?nchen, Ludwigstra?e 33, 80539 Munich, Germany;(3) Smithsonian Environmental Research Center, 647 Contees Wharf Rd., P.O. Box 28, Edgewater, MD 21037-0028, USA
Abstract:Nonparametric methods for the estimation of the link function in generalized linear models are able to avoid bias in the regression parameters. But for the estimation of the link typically the full model, which includes all predictors, has been used. When the number of predictors is large these methods fail since the full model cannot be estimated. In the present article a boosting type method is proposed that simultaneously selects predictors and estimates the link function. The method performs quite well in simulations and real data examples.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号