Small area estimation: the EBLUP estimator based on spatially correlated random area effects |
| |
Authors: | Monica Pratesi Nicola Salvati |
| |
Affiliation: | (1) Department of Statistics and Mathematics Applied to Economics, University of Pisa, Via Ridolfi, 10, 50126 Pisa, Italy |
| |
Abstract: | This paper deals with small area indirect estimators under area level random effect models when only area level data are available and the random effects are correlated. The performance of the Spatial Empirical Best Linear Unbiased Predictor (SEBLUP) is explored with a Monte Carlo simulation study on lattice data and it is applied to the results of the sample survey on Life Conditions in Tuscany (Italy). The mean squared error (MSE) problem is discussed illustrating the MSE estimator in comparison with the MSE of the empirical sampling distribution of SEBLUP estimator. A clear tendency in our empirical findings is that the introduction of spatially correlated random area effects reduce both the variance and the bias of the EBLUP estimator. Despite some residual bias, the coverage rate of our confidence intervals comes close to a nominal 95%. |
| |
Keywords: | Small area estimation Spatial correlation SAR model Spatial EBLUP Lattice data |
本文献已被 SpringerLink 等数据库收录! |