首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian Inference for a Stochastic Epidemic Model with Uncertain Numbers of Susceptibles of Several Types
Authors:Yu Hayakawa  Philip D. O'Neill  Darren Upton  Paul S.F. Yip
Affiliation:Victoria University of Wellington, New Zealand.; University of Nottingham, University Park, UK.;University of Cambridge, UK;The University of Hong Kong; 
Abstract:A stochastic epidemic model with several kinds of susceptible is used to analyse temporal disease outbreak data from a Bayesian perspective. Prior distributions are used to model uncertainty in the actual numbers of susceptibles initially present. The posterior distribution of the parameters of the model is explored via Markov chain Monte Carlo methods. The methods are illustrated using two datasets, and the results are compared where possible to results obtained by previous analyses.
Keywords:Bayesian inference    epidemic    Gibbs sampler    Markov chain Monte Carlo methods    Metropolis–Hastings algorithm
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号