Abstract: | In the development of many diseases there are often associated random variables which continuously reflect the progress of a subject towards the final expression of the disease (failure). At any given time these processes, which we call stochastic covariates, may provide information about the current hazard and the remaining time to failure. Likewise, in situations when the specific times of key prior events are not known, such as the time of onset of an occult tumour or the time of infection with HIV-1, it may be possible to identify a stochastic covariate which reveals, indirectly, when the event of interest occurred. The analysis of carcinogenicity trials which involve occult tumours is usually based on the time of death or sacrifice and an indicator of tumour presence for each animal in the experiment. However, the size of an occult tumour observed at the endpoint represents data concerning tumour development which may convey additional information concerning both the tumour incidence rate and the rate of death to which tumour-bearing animals are subject. We develop a stochastic model for tumour growth and suggest different ways in which the effect of this growth on the hazard of failure might be modelled. Using a combined model for tumour growth and additive competing risks of death, we show that if this tumour size information is used, assumptions concerning tumour lethality, the context of observation or multiple sacrifice times are no longer necessary in order to estimate the tumour incidence rate. Parametric estimation based on the method of maximum likelihood is outlined and is applied to simulated data from the combined model. The results of this limited study confirm that use of the stochastic covariate tumour size results in more precise estimation of the incidence rate for occult tumours. |