首页 | 本学科首页   官方微博 | 高级检索  
     


Bayesian analysis of outlier problems using divergence measures
Authors:Fengchun Peng  Dipak K. Dey
Abstract:
A Bayesian approach is presented for detecting influential observations using general divergence measures on the posterior distributions. A sampling-based approach using a Gibbs or Metropolis-within-Gibbs method is used to compute the posterior divergence measures. Four specific measures are proposed, which convey the effects of a single observation or covariate on the posterior. The technique is applied to a generalized linear model with binary response data, an overdispersed model and a nonlinear model. An asymptotic approximation using Laplace method to obtain the posterior divergence is also briefly discussed.
Keywords:Bayesian inference  diagnostic measure  Gibbs sampler   influential observation  Metropolis-within-Gibbs algorithm  -divergence  overdispersion.  62A15  62F15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号