Abstract: | A Bayesian approach is presented for detecting influential observations using general divergence measures on the posterior distributions. A sampling-based approach using a Gibbs or Metropolis-within-Gibbs method is used to compute the posterior divergence measures. Four specific measures are proposed, which convey the effects of a single observation or covariate on the posterior. The technique is applied to a generalized linear model with binary response data, an overdispersed model and a nonlinear model. An asymptotic approximation using Laplace method to obtain the posterior divergence is also briefly discussed. |