首页 | 本学科首页   官方微博 | 高级检索  
     


Minimax estimation of a lower-bounded scale parameter of a gamma distribution for scale-invariant squared-error loss
Authors:Constance Van Eeden
Abstract:Let X have a gamma distribution with known shape parameter θr;aL and unknown scale parameter θ. Suppose it is known that θ ≥ a for some known a > 0. An admissible minimax estimator for scale-invariant squared-error loss is presented. This estimator is the pointwise limit of a sequence of Bayes estimators. Further, the class of truncated linear estimators C = {θρρ(x) = max(a, ρ), ρ > 0} is studied. It is shown that each θρ is inadmissible and that exactly one of them is minimax. Finally, it is shown that Katz's [Ann. Math. Statist., 32, 136–142 (1961)] estimator of θ is not minimax for our loss function. Some further properties of and comparisons among these estimators are also presented.
Keywords:Restricted parameter spaces  minimax estimation  gamma distribution  lower-bounded scale parameter  62F30  62C20  62F10
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号