首页 | 本学科首页   官方微博 | 高级检索  
     


Computing maximum likelihood estimates from type II doubly censored exponential data
Authors:Arturo J. fernández  José I. Bravo  Íñigo De Fuentes
Affiliation:(1) Departamento de Estadística, I. O. y Computación, Facultad de Matemáticas, Universidad de La Laguna, 38271 La Laguna, Tenerife, Spain
Abstract:It is well-known that, under Type II double censoring, the maximum likelihood (ML) estimators of the location and scale parameters, θ and δ, of a twoparameter exponential distribution are linear functions of the order statistics. In contrast, when θ is known, theML estimator of δ does not admit a closed form expression. It is shown, however, that theML estimator of the scale parameter exists and is unique. Moreover, it has good large-sample properties. In addition, sharp lower and upper bounds for this estimator are provided, which can serve as starting points for iterative interpolation methods such as regula falsi. Explicit expressions for the expected Fisher information and Cramér-Rao lower bound are also derived. In the Bayesian context, assuming an inverted gamma prior on δ, the uniqueness, boundedness and asymptotics of the highest posterior density estimator of δ can be deduced in a similar way. Finally, an illustrative example is included.
Keywords:Maximum likelihood estimation  Type II double censoring  exponential distributions  order statistics  Bayes estimators
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号