首页 | 本学科首页   官方微博 | 高级检索  
     


Structured kernel quantile regression
Authors:Ja-Yong Koo  Kwi Wook Park  Byung Won Kim  Kwang-Rae Kim
Affiliation:1. Department of Statistics , Korea University , Seoul , 136-701 , Korea;2. Financial Supervisory Service , Seoul , 150-743 , Korea;3. Institute of Statistics, Korea University , Seoul , 136-701 , Korea
Abstract:Quantile regression can provide more useful information on the conditional distribution of a response variable given covariates while classical regression provides informations on the conditional mean alone. In this paper, we propose a structured quantile estimation methodology in a nonparametric function estimation setup. Through the functional analysis of variance decomposition, the optimization of the proposed method can be solved using a series of quadratic and linear programmings. Our method automatically selects relevant covariates by adopting a lasso-type penalty. The performance of the proposed methodology is illustrated through numerical examples on both simulated and real data.
Keywords:functional ANOVA decomposition  lasso  linear program  quadratic program  structured kernel
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号