摘 要: | 基于高阶剪切变形理论,推导了轴向荷载与均匀热荷载作用下梁的平衡方程,并将3个非线性方程化简为2个关于横向挠度和转角的非线性积分—微分方程。对于所考虑的两端简支和两端固支边界条件,求解了梁的临界屈曲荷载和梁的后屈曲幅值,讨论了长细比对临界屈曲荷载的影响以及温度和荷载对梁后屈曲幅值的影响。研究结果表明,对于长细比较小的梁,剪切变形对临界屈曲载荷的影响十分明显;而当长细比较大时,与欧拉梁理论得出的结论非常接近。在温度和轴向荷载共同作用下,随着温度升高,梁的临界屈曲荷载值下降但梁中点挠度值升高。
|