首页 | 本学科首页   官方微博 | 高级检索  
     

大数据下分位数回归通讯有效算法及其应用
作者姓名:周勇  张澍一  李子洋
作者单位:华东师范大学统计与数据科学前沿理论及应用教育部重点实验室统计交叉科学研究院和统计学院
摘    要:
考虑风险度量中常见的分位数回归模型,给出在超大容量数据且复杂数据类型下的几类快速分布式算法.虽然仅考虑分位数回归模型,但本文提供的算法大多数可以应用到其它更一般的模型中.由于分位数回归模型的目标函数为非光滑函数,通常的分块集成法和光滑函数高效通讯算法并不适用.本文首先针对完整观测数据,给出了分位数回归模型参数估计的等度连续法,光滑函数逼近法和改进的数萃(Meta)方法三种分布式通讯有效算法.进一步,考虑了非平衡半监督数据,分别针对无标签数据样本量较小和较大两种情形,提出了加权损失函数法和改进的数萃方法两种数据融合方法.所提出的方法可以把分散在不同机器上的半监督数据进行数据融合,从而实现不同数据类型和不同样本量情形下的高效通讯分布式计算,提高算法的精度和参数估计的效率.本文通过大量仿真模拟研究了所提出的算法在有限样本下的表现,并将其应用到了洛杉矶流浪人口数的实际数据分析中,发现其均具有较好的准确性.

关 键 词:大数据分析   数据融合   通讯有效算法   分位数回归
点击此处可从《管理科学》浏览原始摘要信息
点击此处可从《管理科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号