摘 要: | 在《数学通讯》1 988年第 7期的问题征解中 ,曾给出了这样的一个不等式命题 :设x,y,z R ,且x +y+z=0求证 :6(x3 +y3 +z3 ) 2 ≤ (x2 +y2 +z2 ) 3 ( 1 )一般情况 ,有如下的情况 ,即定理 1 设x ,y ,z,e ,r且x +y+z=0则λ(x2R + 1+y2R + 1+z2R + 1) 2n ≤ (x2n +y2n +z2n) 2R + 1( 2 )基中nrεN ,λ =( 1 + 2 - 2n + 1 ) 2R + 1( 1 - 2 -2K) 2n 。这是四川邓寿才老师在文中对 ( 1 )式所作的指数上的推广 ,并用求导的方法证明了 ( 2 )式。本文将用一个初等且比较简明的方法来证明条理 1 ,并将原不等式问题做进一步的推广。一、不等式推广…
|