首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of Nonparametric Conditional Moment Models With Possibly Nonsmooth Generalized Residuals
Authors:Xiaohong Chen  Demian Pouzo
Abstract:
This paper studies nonparametric estimation of conditional moment restrictions in which the generalized residual functions can be nonsmooth in the unknown functions of endogenous variables. This is a nonparametric nonlinear instrumental variables (IV) problem. We propose a class of penalized sieve minimum distance (PSMD) estimators, which are minimizers of a penalized empirical minimum distance criterion over a collection of sieve spaces that are dense in the infinite‐dimensional function parameter space. Some of the PSMD procedures use slowly growing finite‐dimensional sieves with flexible penalties or without any penalty; others use large dimensional sieves with lower semicompact and/or convex penalties. We establish their consistency and the convergence rates in Banach space norms (such as a sup‐norm or a root mean squared norm), allowing for possibly noncompact infinite‐dimensional parameter spaces. For both mildly and severely ill‐posed nonlinear inverse problems, our convergence rates in Hilbert space norms (such as a root mean squared norm) achieve the known minimax optimal rate for the nonparametric mean IV regression. We illustrate the theory with a nonparametric additive quantile IV regression. We present a simulation study and an empirical application of estimating nonparametric quantile IV Engel curves.
Keywords:Nonlinear ill‐posed inverse  penalized sieve minimum distance  modulus of continuity  convergence rate  nonparametric additive quantile IV  quantile IV Engel curves
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号