Generalized Estimation of the BLUP in Mixed-Effects Models: A Comparison with ML and REML |
| |
Authors: | Ching-Ray Yu Kelly H. Zou Martin O. Carlsson Samaradasa Weerahandi |
| |
Affiliation: | Pfizer Inc., New York, USA |
| |
Abstract: | The Best Linear Unbiased Predictor (BLUP) in mixed models is a function of the variance components and they are estimated using maximum likelihood (ML) or restricted ML methods. Nonconvergence of BLUP would occur due to a drawback of the standard likelihood-based approaches. In such situations, ML and REML either do not provide any BLUPs or all become equal. To overcome this drawback, we provide a generalized estimate (GE) of BLUP that does not suffer from the problem of negative or zero variance components, and compare its performance against the ML and REML estimates of BLUP. Simulated and published data are used to compare BLUP. |
| |
Keywords: | Best linear unbiased predictor Generalized estimate Random effects model |
|