首页 | 本学科首页   官方微博 | 高级检索  
     


An Empirical Analysis of Some Nonparametric Goodness-of-Fit Tests for Censored Data
Authors:N. Balakrishnan  M. Vedernikova
Affiliation:1. Department of Mathematics and Statistics, McMaster University, Hamilton, Ontario, Canada;2. Department of Applied Mathematics, Novosibirsk State Technical University, Novosibirsk, Russia
Abstract:
In this article, we consider some nonparametric goodness-of-fit tests for right censored samples, viz., the modified Kolmogorov, Cramer–von Mises–Smirnov, Anderson–Darling, and Nikulin–Rao–Robson χ2 tests. We also consider an approach based on a transformation of the original censored sample to a complete one and the subsequent application of classical goodness-of-fit tests to the pseudo-complete sample. We then compare these tests in terms of power in the case of Type II censored data along with the power of the Neyman–Pearson test, and draw some conclusions. Finally, we present an illustrative example.
Keywords:Anderson–Darling test  Censored samples  Cramer–von Mises–Smirnov test  Empirical power  Goodness-of-fit  Kolmogorov test  Monte Carlo simulations  Neyman–Pearson test  Nikulin–Rao–Robson chi-squared test  Pseudo-complete sample
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号