首页 | 本学科首页   官方微博 | 高级检索  
     


Lower Bounds on Approximation Errors to Numerical Solutions of Dynamic Economic Models
Abstract:
We propose a novel methodology for evaluating the accuracy of numerical solutions to dynamic economic models. It consists in constructing a lower bound on the size of approximation errors. A small lower bound on errors is a necessary condition for accuracy: If a lower error bound is unacceptably large, then the actual approximation errors are even larger, and hence, the approximation is inaccurate. Our lower‐bound error analysis is complementary to the conventional upper‐error (worst‐case) bound analysis, which provides a sufficient condition for accuracy. As an illustration of our methodology, we assess approximation in the first‐ and second‐order perturbation solutions for two stylized models: a neoclassical growth model and a new Keynesian model. The errors are small for the former model but unacceptably large for the latter model under some empirically relevant parameterizations.
Keywords:   Approximation errors        error bound        forward error analysis        backward error analysis        Euler equation residuals        upper error bound        lower error bound        accuracy        numerical solution        approximate solution        new Keynesian model   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号