首页 | 本学科首页   官方微博 | 高级检索  
     


Influence diagnostics in heteroscedastic and/or autoregressive nonlinear elliptical models for correlated data
Authors:Cibele M. Russo  Gilberto A. Paula  Francisco José A. Cysneiros  Reiko Aoki
Affiliation:1. Instituto de Ciências Matemáticas e de Computa??o, Universidade de S?o Paulo , Caixa Postal 668, CEP 13560-970 , S?o Carlos , SP , Brazil;2. Instituto de Matemática e Estatística, Universidade de S?o Paulo , Caixa Postal 66281 (Ag. Cidade de S?o Paulo), CEP 05314-970 , S?o Paulo , SP , Brazil;3. Departamento de Estatística , Universidade Federal de Pernambuco , CEP 50740-540 , Recife , PE , Brazil
Abstract:
In this paper, we propose nonlinear elliptical models for correlated data with heteroscedastic and/or autoregressive structures. Our aim is to extend the models proposed by Russo et al. 22 by considering a more sophisticated scale structure to deal with variations in data dispersion and/or a possible autocorrelation among measurements taken throughout the same experimental unit. Moreover, to avoid the possible influence of outlying observations or to take into account the non-normal symmetric tails of the data, we assume elliptical contours for the joint distribution of random effects and errors, which allows us to attribute different weights to the observations. We propose an iterative algorithm to obtain the maximum-likelihood estimates for the parameters and derive the local influence curvatures for some specific perturbation schemes. The motivation for this work comes from a pharmacokinetic indomethacin data set, which was analysed previously by Bocheng and Xuping 1 under normality.
Keywords:autoregressive structure  correlated data  elliptical distributions  heteroscedastic models  nonlinear models
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号