首页 | 本学科首页   官方微博 | 高级检索  
     


The best subset of parameters in min-max linear regression
Authors:Ronald D. Armstrong  Philip . Beck
Affiliation:1. The State University , Rutgers, Newark, New Jersey, 07102;2. American Airlines , DFW Airport, Texas, 75261
Abstract:These Fortran-77 subroutines provide building blocks for Generalized Cross-Validation (GCV) (Craven and Wahba, 1979) calculations in data analysis and data smoothing including ridge regression (Golub, Heath, and Wahba, 1979), thin plate smoothing splines (Wahba and Wendelberger, 1980), deconvolution (Wahba, 1982d), smoothing of generalized linear models (O'sullivan, Yandell and Raynor 1986, Green 1984 and Green and Yandell 1985), and ill-posed problems (Nychka et al., 1984, O'sullivan and Wahba, 1985). We present some of the types of problems for which GCV is a useful method of choosing a smoothing or regularization parameter and we describe the structure of the subroutines.Ridge Regression: A familiar example of a smoothing parameter is the ridge parameter X in the ridge regression problem which we write.
Keywords:linear programming  regression  min-max value criterion  Chebychev norm  branch and bound
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号