首页 | 本学科首页   官方微博 | 高级检索  
     


On the Spectral Decomposition in Normal Discriminant Analysis
Authors:Luca Bagnato  Francesca Greselin  Antonio Punzo
Affiliation:1. Dipartimento di Discipline Matematiche, Finanza Matematica e Econometria , Università Cattolica del Sacro Cuore , Milano , Italy;2. Department of Statistics and Quantitative Methods , Milano Bicocca University , Milan , Italy;3. Dipartimento di Economia e Impresa , Università di Catania , Catania , Italy
Abstract:This article enlarges the covariance configurations, on which the classical linear discriminant analysis is based, by considering the four models arising from the spectral decomposition when eigenvalues and/or eigenvectors matrices are allowed to vary or not between groups. As in the classical approach, the assessment of these configurations is accomplished via a test on the training set. The discrimination rule is then built upon the configuration provided by the test, considering or not the unlabeled data. Numerical experiments, on simulated and real data, have been performed to evaluate the gain of our proposal with respect to the linear discriminant analysis.
Keywords:CEM algorithm  EM algorithm  Mixture models  Multiple testing procedures  Normal discriminant analysis  Spectral decomposition
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号