Powers of Discrete Goodness-of-Fit Test Statistics for a Uniform Null Against a Selection of Alternative Distributions |
| |
Authors: | Michael Steele Janet Chaseling |
| |
Affiliation: | 1. School of Mathematical and Physical Sciences, James Cook University , Australia mike.steele@jcu.edu.au;3. Australian School of Environmental Studies, Griffith University , Australia |
| |
Abstract: | The comparative powers of six discrete goodness-of-fit test statistics for a uniform null distribution against a variety of fully specified alternative distributions are discussed. The results suggest that the test statistics based on the empirical distribution function for ordinal data (Kolmogorov–Smirnov, Cramér–von Mises, and Anderson–Darling) are generally more powerful for trend alternative distributions. The test statistics for nominal (Pearson's chi-square and the nominal Kolmogorov–Smirnov) and circular data (Watson's test statistic) are shown to be generally more powerful for the investigated triangular (∨), flat (or platykurtic type), sharp (or leptokurtic type), and bimodal alternative distributions. |
| |
Keywords: | Alternative distribution Empirical distribution function Goodness-of-fit Null distribution Power |
|
|