首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient Semiparametric Bayesian Estimation of Multivariate Discrete Proportional Hazards Model with Random Effects
Authors:Yasuhiro Omori  Richard A. Johnson
Affiliation:1. Faculty of Economics , University of Tokyo , Tokyo, Japan omori@e.u-tokyo.ac.jp;3. Department of Statistics , University of Wisconsin , Madison, Wisconsin, USA
Abstract:
We incorporate a random effect into a multivariate discrete proportional hazards model and propose an efficient semiparametric Bayesian estimation method. By introducing a prior process for the parameters of baseline hazards, we consider a nonparametric estimation of baseline hazards function. Using a state space representation, we derive a dynamic modeling of baseline hazards function and propose an efficient block sampler for Markov chain Monte Carlo method. A numerical example using kidney patients data is given.
Keywords:Bayesian analysis  Discrete survival time  Markov chain Monte Carlo  Multivariate proportional hazards  Random effects  State space model
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号