首页 | 本学科首页   官方微博 | 高级检索  
     


Time-varying clustering of multivariate longitudinal observations
Authors:Antonello Maruotti  Maurizio Vichi
Affiliation:1. Centre for Innovation and Leadership in Health Sciences, University of Southampton, Southampton, UK;2. Dipartimento di Scienze Economiche, Politiche e delle Lingue Moderne, Libera Università Maria Ss. Assunta, Roma, Italya.maruotti@lumsa.it;4. Dipartimento di Scienze Economiche, Politiche e delle Lingue Moderne, Libera Università Maria Ss. Assunta, Roma, Italy
Abstract:Abstract

We propose a statistical method for clustering multivariate longitudinal data into homogeneous groups. This method relies on a time-varying extension of the classical K-means algorithm, where a multivariate vector autoregressive model is additionally assumed for modeling the evolution of clusters' centroids over time. Model inference is based on a least-squares method and on a coordinate descent algorithm. To illustrate our work, we consider a longitudinal dataset on human development. Three variables are modeled, namely life expectancy, education and gross domestic product.
Keywords:Human development index  K-means  Longitudinal data  Time-varying clustering
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号