首页 | 本学科首页   官方微博 | 高级检索  
     


Tuning Parameter Selector for the Penalized Likelihood Method in Multivariate Generalized Linear Models
Authors:Xiaoguang Wang  Lixin Song  Jie Cui
Affiliation:1. School of Mathematical Sciences , Dalian University of Technology , Dalian , China wangxg@dlut.edu.cn;3. School of Mathematical Sciences , Dalian University of Technology , Dalian , China
Abstract:Variable selection is fundamental to high-dimensional multivariate generalized linear models. The smoothly clipped absolute deviation (SCAD) method can solve the problem of variable selection and estimation. The choice of the tuning parameter in the SCAD method is critical, which controls the complexity of the selected model. This article proposes a criterion to select the tuning parameter for the SCAD method in multivariate generalized linear models, which is shown to be able to identify the true model consistently. Simulation studies are conducted to support theoretical findings, and two real data analysis are given to illustrate the proposed method.
Keywords:Canonical link function  Model selection  Multivariate generalized linear model  Smoothly clipped absolute deviation  Tuning parameter
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号