首页 | 本学科首页   官方微博 | 高级检索  
     


Computing Marginal Likelihoods via Posterior Sampling
Authors:Stephen G. Walker
Affiliation:1. School of Mathematics, Statistics &2. Actuarial Science, University of Kent, Canterbury, UKS.G.Walker@kent.ac.uk
Abstract:This article presents a novel and simple approach to the estimation of a marginal likelihood, in a Bayesian context. The estimate is based on a Markov chain output which provides samples from the posterior distribution and an additional latent variable. It is the mean of this latent variable which provides the estimate for the value of the marginal likelihood.
Keywords:Latent variable  Marginal likelihood  MCMC  Posterior sampling
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号