Algorithms for the construction of optimizing distributions |
| |
Authors: | Saumendranath Mandal Ben Torsney |
| |
Affiliation: | Department of Statistics , University of Glasgow , Glasgow, G128QW, United Kingdom |
| |
Abstract: | ![]() We will consider the following problem.Maximise Φ(p)over P={p=(p1,P2,…,pj):Pj≧0,∑pj=1}". We require to calcute an optimizing distribution. Examples arise in optimal regression design,maximum likelihood estimation and stratified sazmpling problems. A class of multiplicative algorithms, indexed by functions which depend on the derivatives of Φ(·)is considered for solving this problem.Iterations are of the form:pj (r+1)αpj (r)f(xj (r)), where xj (r)=dj (r) or Fj (r)and dj (r)=?Φ/?pj While Fj (r)=Dj (r)?∑pi (r)di (r) (a directional derivative)at p=p(r)f(·)satisfies some suitable properties and may depend on one or more free parameters. These iterations neatly submit to the constraints ofv the problem. Some results will be reported and extensions to problems dependin on two or more distributions and to problems with additional constraints will be considered. |
| |
Keywords: | Optimal design directional derivatives marginal homogeneity multiplicative algorithms maximum likelihood estimation |
|
|