首页 | 本学科首页   官方微博 | 高级检索  
     


Objective Bayesian Inference for the Half-Normal and Half-t Distributions
Authors:M. P. Wiper  F. J. Girón
Affiliation:1. Departamento de Estadística , Universidad Carlos III de Madrid , Madrid, Spain;2. Departamento de Estadística e Investigación Operativa , Universidad de Malaga , Malaga, Spain
Abstract:
In this article, Bayesian inference for the half-normal and half-t distributions using uninformative priors is considered. It is shown that exact Bayesian inference can be undertaken for the half-normal distribution without the need for Gibbs sampling. Simulation is then used to compare the sampling properties of Bayesian point and interval estimators with those of their maximum likelihood based counterparts. Inference for the half-t distribution based on the use of Gibbs sampling is outlined, and an approach to model comparison based on the use of Bayes factors is discussed. The fitting of the half-normal and half-t models is illustrated using real data on the body fat measurements of elite athletes.
Keywords:Bias-correction  Gaussian-modulated gamma distribution  Gibbs sampling  Likelihood based inference  Model selection  Right-truncated normal-gamma distribution
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号