首页 | 本学科首页   官方微博 | 高级检索  
     


Efficient estimators for the good family
Authors:Louis G Doray  Andrew Luong
Affiliation:1. Département de mathématiques et de statistique , Université de Montréal , Montréal, Québec, H3C 3J7, CanadaC.P. 6128, Succursale Centre-ville;2. école d'actuariat , Université Laval , Ste-Foy, Quebéc, G1K 7P4, CanadaCite Universitaire
Abstract:
We consider the problem of estimating the two parameters of the discrete Good distribution. We first show that the sufficient statistics for the parameters are the arithmetic and the geometric means. The maximum likelihood estimators (MLE's) of the parameters are obtained by solving numerically a system of equations involving the Lerch zeta function and the sufficient statistics. We find an expression for the asymptotic variance-covariance matrix of the MLE's, which can be evaluated numerically. We show that the probability mass function satisfies a simple recurrence equation linear in the two parameters, and propose the quadratic distance estimator (QDE) which can be computed with an ineratively reweighted least-squares algorithm. the QDE is easy to calculate and admits a simple expression for its asymptotic variance-covariance matrix. We compute this matrix for the MLE's and the QDE for various values of the parameters and see that the QDE has very high asymptotic efficiency. Finally, we present a numerical example.
Keywords:quadratic distance estimator  iteratively reweighted least-squares  maximum likelihood  Lerch zeta function  asymptotic efficiency  zeta distribution  Lerch distribution
相似文献(共20条):
[1]、Efficient estimators for adaptive stratified sequential sampling[J].Journal of Statistical Computation and Simulation
[2]、Francisco Louzada.Efficient closed-form maximum a posteriori estimators for the gamma distribution[J].Journal of Statistical Computation and Simulation,2018,88(6):1134-1146.
[3]、Efficient calculation of hodges-lehmann estimators of location[J].Journal of Statistical Computation and Simulation
[4]、Ramkrishna S. Solanki,Housila P. Singh.Efficient classes of estimators in stratified random sampling[J].Statistical Papers,2015,56(1):83-103.
[5]、T. J. Carmody,R. L. Eubank,V. N. LaRiccia.A family of minimum quantile distance estimators for the three-parameter Weibull distribution[J].Statistical Papers,1983,25(1):69-82.
[6]、Albertus S. Koorts.Second order efficiency for a class of estimators within the multinomial family[J].统计学通讯:理论与方法,2013,42(10):2331-2343.
[7]、Yogesh Mani Tripathi,Somesh Kumar.Minimax estimators for the lower-bounded scale parameter of a location-scale family of distributions[J].统计学通讯:理论与方法,2017,46(18):9185-9193.
[8]、Housila P. Singh,Sushil K. Shukla.A family of shrinkage estimators for the square of mean in normal distribution[J].Statistical Papers,2003,44(3):433-442.
[9]、Fares Alazemi,Youssef Ouknine.Efficient and superefficient estimators of filtered Poisson process intensities[J].统计学通讯:理论与方法,2019,48(7):1682-1692.
[10]、Housila Prasad Singh,Sharad Saxena,Harshada Joshi.A family of shrinkage estimators for Weibull shape parameter in censored sampling[J].Statistical Papers,2008,49(3):513-529.
[11]、N.?Sanjari?FarsipourEmail author.Admissibility of estimators in the non-regular family under entropy loss function[J].Statistical Papers,2003,44(2):249-256.
[12]、Kerry G. Bemis,Vasant P. Bhapkar.On the equivalence of some test criteria based on BAN estimators for the multivariate exponential family[J].Journal of statistical planning and inference,1982,6(3):277-286.
[13]、Efficient computation of the performance of bootstrap and jackknife estimators of the variance of L-statistics[J].Journal of Statistical Computation and Simulation
[14]、Housila P. Singh,Jong M. Kim.A family of estimators of population variance in two-occasion rotation patterns[J].统计学通讯:理论与方法,2013,42(14):4106-4116.
[15]、E., Yamamoto,T., Yanagimoto.Moment estimators for the beta-binomial distribution[J].Journal of applied statistics,1992,19(2):273-283.
[16]、Marios A.G. Viana.Combined estimators for the correlation coefficient[J].统计学通讯:理论与方法,2013,42(13):1483-1504.
[17]、Kai Fun Yu.A necessary and sufficient condition for the strong consistency of a family of estimators of the common odds ratio[J].Revue canadienne de statistique,1995,23(2):215-225.
[18]、P. Vellaisamy,Abraham P. Punnen.Improved estimators for the selected location parameters[J].Statistical Papers,2002,43(2):291-299.
[19]、K. O. Bownan,L. R. Shenton.Properties of estimators for the gamma distribution[J].统计学通讯:模拟与计算,2013,42(4):377-519.
[20]、Anne Philippe.Optimal estimators for the importance sampling method[J].统计学通讯:模拟与计算,2013,42(1):97-119.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号