首页 | 本学科首页   官方微博 | 高级检索  
     


Maximum and Minimum Prediction Variance for Spherical and Cuboidal Split Plot Designs
Authors:Wayne R. Wesley  James R. Simpson  Peter A. Parker  Joseph J. Pignatiello Jr.
Affiliation:1. School of Engineering , University of Technology, Jamaica , Kingston, Jamaica wwesley@ utech.edu.jm or wwesley3@hotmail.com;3. Department of Industrial and Manufacturing Engineering , Florida State University , Tallahassee, Florida, USA;4. Systems Engineering Directorate , NASA Langley Research Center , Hampton, Virginia, USA
Abstract:
The impact of restricted randomization on the information matrix has created challenges for the computation of design optimality criteria. This article focuses on the computation of the maximum and minimum prediction variance for Central Composite (CCD) and Box–Behnken (BBD) split plot designs (SPD). The approach is to analytically determine the exact maximum and minimum prediction variance for both spherical and cuboidal second-order SPD. A particular feature of these analytical functions is that they are functions of the design parameters. Finally, the application of these analytical functions is demonstrated for a CCD SPD.
Keywords:Design optimality  Prediction variance  Restricted randomization  Response surface designs  Split-plot designs
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号