首页 | 本学科首页   官方微博 | 高级检索  
     


Outlier detection by robust principal components analysis
Authors:C. Caroni
Affiliation:Department of Mathematics , National Technical University of Athens , 157 80, Athens, Greece , Zografou Campus
Abstract:The robust principal components analysis (RPCA) introduced by Campbell (Applied Statistics 1980, 29, 231–237) provides in addition to robust versions of the usual output of a principal components analysis, weights for the contribution of each point to the robust estimation of each component. Low weights may thus be used to indicate outliers. The present simulation study provides critical values for testing the kth smallest weight in the RPCA of a sample of n p-dimensional vectors, under the null hypothesis of a multivariate normal distribution. The cases p=2(2)10, 15, 20 for n=20, 30, 40, 50, 75, 100 subject to n≥p/2, are examined, with k≤√n.
Keywords:Outlier tests  multivariate outliers  robust estimation  principal components analysis
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号