首页 | 本学科首页   官方微博 | 高级检索  
     


Asymptotic Properties and Variance Estimators of the M-quantile Regression Coefficients Estimators
Authors:Annamaria Bianchi  Nicola Salvati
Affiliation:1. Department of Management, Economics and Quantitative Methods, Università di Bergamo, Bergamo, Italyannamaria.bianchi@unibg.it;3. DEM, Università di Pisa, Pisa, Italy
Abstract:
M-quantile regression is defined as a “quantile-like” generalization of robust regression based on influence functions. This article outlines asymptotic properties for the M-quantile regression coefficients estimators in the case of i.i.d. data with stochastic regressors, paying attention to adjustments due to the first-step scale estimation. A variance estimator of the M-quantile regression coefficients based on the sandwich approach is proposed. Empirical results show that this estimator appears to perform well under different simulated scenarios. The sandwich estimator is applied in the small area estimation context for the estimation of the mean squared error of an estimator for the small area means. The results obtained improve previous findings, especially in the case of heteroskedastic data.
Keywords:Influence function  M-estimation  Taylor expansion  Simulation experiments  Small area estimation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号