首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Properties of Designs in Experiments on Spatial Lattices
Authors:Neil A Butler
Institution:1. School of Mathematical Sciences, University of Nottingham , Nottingham, UK neil.butler@nottingham.ac.uk
Abstract:ABSTRACT

When spatial variation is present in experiments, it is clearly sensible to use designs with favorable properties under both generalized and ordinary least squares. This will make the statistical analysis more robust to misspecification of the spatial model than would be the case if designs were based solely on generalized least squares. In this article, treatment information is introduced as a way of studying the ordinary least squares properties of designs. The treatment information is separated into orthogonal frequency or polynomial components which are assumed to be independent under the spatial model. The well-known trend-resistant designs are those with no treatment information at the very low order frequency or polynomial components which tend to have the higher variances under the spatial model. Ideally, designs would be chosen with all the treatment information distributed at the higher-order components. However, the results in this article show that there are limits on how much trend resistance can be achieved as there are many constraints on the treatment information. In addition, appropriately chosen Williams squares designs are shown to have favorable properties under both ordinary and generalized least squares. At all times, the ordinary least squares properties of the designs are balanced against the generalized least squares objectives of optimizing neighbor balance.
Keywords:Field trials  Frequency domain  Generalized least squares  Ordinary least squares  Randomized block designs  Spatial model  Treatment information  Trend resistance  Williams squares
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号