首页 | 本学科首页   官方微博 | 高级检索  
     


Quantitative convergence assessment for Markov chain Monte Carlo via cusums
Authors:S. P. Brooks
Affiliation:(1) School of Mathematics, University of Bristol University Walk, Bristol, BS8 1TW, UK
Abstract:Yu (1995) provides a novel convergence diagnostic for Markov chain Monte Carlo (MCMC) which provides a qualitative measure of mixing for Markov chains via a cusum path plot for univariate parameters of interest. The method is based upon the output of a single replication of an MCMC sampler and is therefore widely applicable and simple to use. One criticism of the method is that it is subjective in its interpretation, since it is based upon a graphical comparison of two cusum path plots. In this paper, we develop a quantitative measure of smoothness which we can associate with any given cusum path, and show how we can use this measure to obtain a quantitative measure of mixing. In particular, we derive the large sample distribution of this smoothness measure, so that objective inference is possible. In addition, we show how this quantitative measure may also be used to provide an estimate of the burn-in length for any given sampler. We discuss the utility of this quantitative approach, and highlight a problem which may occur if the chain is able to remain in any one state for some period of time. We provide a more general implementation of the method to overcome the problem in such cases.
Keywords:Markov chain Monte Carlo  mixing  cumulative sums  Ising model  Bayesian model choice
本文献已被 SpringerLink 等数据库收录!
正在获取相似文献,请稍候...
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号