首页 | 本学科首页   官方微博 | 高级检索  
     


Bayes prediction of Poisson regression superpopulation mean with a non gamma prior
Authors:Priyanka Aggarwal  Ashok K. Bansal
Affiliation:1. Department of Statistics, Hindu College, University of Delhi, Delhi, India;2. Department of Statistics, University of Delhi, Delhi, India
Abstract:We consider Khamis' (1960) Laguerre expansion with gamma weight function as a class of “near-gamma” priors (K-prior) to obtain the Bayes predictor of a finite population mean under the Poisson regression superpopulation model using Zellner's balanced loss function (BLF). Kullback–Leibler (K-L) distance between gamma and some K-priors is tabulated to examine the quantitative prior robustness. Some numerical investigations are also conducted to illustrate the effects of a change in skewness and/or kurtosis on the Bayes predictor and the corresponding minimal Bayes predictive expected loss (MBPEL). Loss robustness with respect to the class of BLFs is also examined in terms of relative savings loss (RSL).
Keywords:Balanced loss function  Bayes predictive expected loss  Bayes predictor  Loss robustness  K-prior  Kullback–Leibler distance  Poisson regression superpopulation model  Relative savings loss.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号